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Abstract. Equations for angle- and spin-resolved photoemission from core levels of
ferromagnets are derived using the atomic model. They are applied to thenp subshells and
to the particular geometries of experiment with the photoemission normal to the surface, which
have been used already in several experiments. It is shown that for these geometries the spin-
resolved spectra obtained with linearly polarized light are especially simple and contain the
contribution of only one or two magnetic sublevels of thenp3/2 state, and of only one sublevel
of the np1/2 state, which allow one to resolve the magnetic splitting of core levels. The use of
circularly polarized or unpolarized light gives a less transparent picture.

1. Introduction

Recent experimental investigations [1–10] have shown that the shape of photoelectron
spectra from the core levels of ferromagnets are essentially changed when the direction
of magnetization is reversed. The difference between two spectra obtained with opposite
directions of sample magnetizations was called magnetic x-ray dichroism in photoemission
[1], or magnetic dichroism in angular distribution (MDAD) of photoelectrons [5]. The
effect exists for all kinds of light polarization, namely for circular [1–3], linear [4–7] and
even unpolarized [8, 9] light. Spin-resolved measurements also revealed that in each spin
channel the shapes of photoelectron spectra are different [4, 10]. From the very beginning
[1] it was clear that the observed phenomena appear as a result of the energy splitting of
a particular core level due to exchange interaction with the valence-band d (or f) electrons.
The first numerical calculations performed for the 2p subshell of Fe in [11] and for
the 3d valence band of Ni in [12] fully supported this general conclusion. In recently
published theoretical papers [13, 14] the general properties of the angular distributions
of photoelectrons emitted from ferromagnets have been discussed, but without a detailed
analysis of the experiments already performed and of the kind of information which can
be extracted from these experiments. We would like to fill this gap and to present the
qualitative analysis of the spin-resolved spectra using the atomic model for the description
of the process.

Previously it has already been shown [15] that all the qualitative features of MDAD
spectra can be adequately described by the atomic model, but in [15] the spin polarization
of electrons was disregarded. Therefore the main purpose of this paper is to extend this
model in order to include the photoelectron spin also in our considerations and to describe
the general features of the angle- and spin-resolved photoelectron spectra from ferromagnets
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4972 N A Cherepkov and V V Kuznetsov

which follow from the atomic model without any numerical calculation. This model should
be applicable for the description of photoemission from core levels, when the photoelectron
energy is high enough to neglect the scattering processes. A recent investigation of spin
polarization in Cu core level photoemission [16] clearly demonstrated that the atomic
model can be successfully applied to a quantitative analysis of angle- and spin-resolved
photoemission from solids, in that case from non-magnetic solids. The main advantage of
using the atomic model is the simplicity of the analytical equations which make it easy
both to analyse them qualitatively and to perform numerical calculations with different
kinds of approximate wavefunction. Then, from the comparison with experiment, one
can make a conclusion on the importance of the solid state effects in the process under
consideration. In addition, the general equations obtained in the atomic model enables one
to estimate the quality of some rather arbitrary approximations made in model considerations
when, for example, the interference terms betweenl + 1 andl − 1 continua are neglected
[17].

2. General theory

Consider the photoionization of atoms in the electric-dipole approximation, taking into
account only one-electron processes. If in the initial state the ionized subshell is closed,
in the final state there will be a hole characterized by the quantum numbersnlj with
j being the total angular momentum. Owing to exchange interaction with the open
valence shell in ferromagnets, eachnlj state will be energetically split into components
with a given projectionmj . Thus each sublevel of the hole state will be characterized
by the quantum numbersnljmj and therefore will be polarized. This characterization
of the hole states is justified when the spin–orbit splitting is larger than the exchange
splitting, as for example in the 2p subshell of Fe. In the 3p subshell of Fe the exchange
splitting is nearly as large as the spin–orbit splitting (see [17] and references therein),
so that our characterization of the hole states will be less appropriate. We shall not
consider explicitly the exchange interaction between the hole state and an open nd or nf
subshell, and we shall disregard the total angular momentum of the outer shell because
it will not be a good quantum number in solids. This is justified when the bandwidth
of conduction electrons is large compared with the magnetic splitting of the core hole
state, which corresponds to a high hopping rate of conduction electrons [18]. The latter
approximation is used in almost all papers devoted to this problem. So, the ferromagnetic
nature of the solid is described in our model by introducing the energy splitting of
core hole magnetic sublevels. The magnitude of this splitting does not influence the
angular dependence of the spin polarization and therefore can be considered simply as
an empirical parameter. This is in full analogy to the fact that the spin polarization of
atomic photoelectrons ejected from unpolarized atoms does not depend on the strength
of the spin–orbit interaction as soon as the spin–orbit splitting of atomic levels has been
resolved [19].

It is easy to show [19] that the photoionization of a closed subshell when the final
ionic state is polarized is described by the same equations as the photoionization of a one-
electron subshell with the same orbital and total angular momenta which is initially polarized.
Therefore for simplicity we shall imply in the derivation below that a one-electron subshell
nlj is ionized. Since each magnetic sublevel is populated incoherently, the corresponding
atomic density matrix is diagonal in the coordinate frame whoseZ axis coincides with the
atomic polarization directionn. If the directionn does not coincide with theZ axis of our
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laboratory frame, we can diagonalize the density matrix by a rotation

〈jmj |ρa|jm′
j 〉 =

∑
m1

Dj
mj m1

(�)〈jm1|ρn
a |jm1〉Dj∗

m′
j m1

(�). (1)

The quantitiesDj
mj m1(�) are Wigner rotation matrices [20], and� denotes the Euler angles

corresponding to the rotation from the laboratoryZ axis to the directionn of the atomic
polarization. In the following we shall imply that our laboratory frame is defined by the
photon beam, so that itsZ axis coincides with the direction of the photon beam.

A general expression for the angular distribution of photoelectrons with defined spin
polarization ejected from polarized atoms in our laboratory frame is [21–23]

Ij (κ, s, n) = αωp

2π

∑
λ,λ′

∑
µ1,µ2

∑
mj ,m

′
j

〈9−
pµ1

|dλ|9nljmj
〉〈jmj |ρa|jm′

j 〉

×〈λ|ργ |λ′〉〈9nljm′
j
|d∗

λ′ |9−
pµ2

〉〈µ2| 1
2(1 + s · σ)|µ1〉 (2)

where α is the fine-structure constant,ω is the photon energy,p is the photoelectron
momentum,κ = p/p, s is the unit vector in the direction of the photoelectron spin,µ

is the projection of spin on the laboratoryZ axis, σ is the Pauli matrix vector,9nljm is
the initial-state wavefunction,9−

pµ is the final-state wavefunction which contains in the
asymptotic region the superposition of a plane wave propagating in the direction of the
electron momentump and a converging spherical wave, andργ is the photon density
matrix. Neglecting spin–orbit interaction in continuous spectrum, we obtain the following
equation for the dipole matrix elements in (2) [24]:

〈9−
pµ|dλ|9nljmj

〉 = 2π√
p

∑
l1,m1

∑
m

[j ]1/2(−i)l1 exp(iδl1)Yl1m1(κ̂)(−1)1/2−l−mj +l1−m1

×
(

l 1
2 j

m µ −mj

) (
l1 1 l

−m1 λ m

)
〈εl1‖d‖nlj〉. (3)

Hereδl1 is the partial-wave phase shift and〈εl1‖d‖nlj〉 is the reduced dipole matrix element.
Instead of density matrices it is more convenient in our derivation to use the state

multipoles. The photon density matrix in the laboratory frame can be expanded in state
multipoles according to the equation [25]

〈λ|ργ |λ′〉 =
∑
k,κ

(−1)1−λ[k]1/2

(
1 1 k

λ −λ′ −κ

)
ρ

γ

kκ (4)

where [k] ≡ (2k + 1) and the state multipolesργ

kκ can be expressed through the Stokes
parameters. The atomic density matrix in (2) should be at first transformed into the
coordinate frame where it is diagonal according to (1) and then expanded in state multipoles
similar to (4). Then in the laboratory frame we obtain finally

〈jmj |ρa|jm′
j 〉 =

∑
N,MN

√
4π(−1)j−mj

(
j j N

mj −m′
j −MN

)
Y ∗

NMN
(n̂)ρn

N0. (5)

Here only the state multipolesρn
N0 with zero projections remain. Finally, the spin projection

operator in (2) can be presented as follows:

〈µ2| 1
2(1 + s · σ)|µ1〉 =

√
2π

∑
x,ξ

(−1)1/2−µ2

(
1
2

1
2 x

µ2 −µ1 −ξ

)
Y ∗

xξ (ŝ). (6)
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Substituting the definitions (3)–(6), and performing summations over projections of
angular momenta, we find that [26]

Ij (κ, s, n) = σnlj (ω)
√

6π [l]
∑
k,κ

∑
x,ξ

∑
L,M

∑
N,MN

∑
y,η

[j, y][k, L]1/2(−1)N−ηZkLyρ
γ

kκρ
n
N0

×
(

x y N

−ξ η −MN

) (
k L y

κ M η

) 
y N x

l j 1
2

l j 1
2

 Y ∗
LM(κ̂)Y ∗

xξ (ŝ)Y ∗
NMN

(n̂)

(7)

where

ZkLy =
√

3[l]B−1
∑
l1,l2

(i)l1−l2 exp[i(δl1 − δl2)][ l1, l2]1/2(−1)l2
(

l1 l2 L

0 0 0

) {
k L y

1 l2 l

1 l1 l

}
×〈εl1‖d‖nlj〉〈nlj‖d‖εl2〉 (8)

B =
∑
l1

|〈εl1‖d‖nlj〉|2 (9)

and the photoionization cross section is

σnlj (ω) = 4π2αωB

3[l]
. (10)

Figure 1. Definition of the geometry of the experiments.

If the spin–orbit interaction in the continuous spectrum is taken into account, equation (8)
will change, while equation (7) remains valid. Therefore the latter can be used for a general
analysis of the angular distributions. Up to now nobody has analysed the general equation
(7) in application to free polarized atoms because in that case it is sufficient to find out
the angular distribution without determining the spin polarization in order to obtain the
complete characterization of the process [23].

In the general case of arbitrary directions of all three vectorsκ, s and n there are
too many terms in the angular distribution (7) in order to write them explicitly, as was
done in the case of the spin-integrated angular distribution in [27]. However, for particular
geometries of the experiment when some of the vectors are parallel or perpendicular to each
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other, the number of terms in (7) can be essentially reduced, which makes the analysis of
the angular distribution feasible.

3. Particular geometries of experiment

In this section we shall apply the general equation (7) to the particular cases of photoemission
from np subshells considered in several experiments. Figure 1 shows the geometry of
experiment used in [4] for an angle- and spin-resolved photoemission study from the 3p
core level of magnetized Fe with linearly polarized light. In this experiments and n
are either parallel or antiparallel to each other and are perpendicular to the light beam,
photoelectrons are detected in the direction of the surface normal so thatκ ⊥ n andκ ⊥ s,
and the light is linearly polarized perpendicular to the direction of magnetization. From
equation (7) we obtain the following expressions fornp1/2 andnp3/2 hole states:

I1/2(κ, s, n) = σ(ω)

4π
√

2
(ρn

00 ∓ ρn
10)[1 + β − 3

2β sin2 θ ± η1/2 sin(2θ)]

(11)

I3/2(κ, s, n) = σ(ω)

4π

[(
ρn

00 + 1
2ρn

20 ± 2√
5
ρn

10 ± 3

2
√

5
ρn

30

)
×(1 + β − 3

2β sin2 θ) ± (ρn
00 + 2ρn

20 ±
√

5ρn
10)η

3/2 sin(2θ)

]
(12)

whereβ is the usual angular asymmetry parameter,ηj is the spin polarization parameter
defined by equation (14) of [24], and the upper and lower signs refer tos‖n ands‖ − n,
which we shall denote in the following as(M ↑, s ↑) (magnetization up, spin up) and
(M ↑, s ↓) (magnetization up, spin down). The equations for(M ↓, s ↓) and (M ↓, s ↑)

differ from the corresponding equations (11) and (12) for(M ↑, s ↑) and(M ↑, s ↓) by the
change in sign of the term with sin(2θ). It is worth while to note that equations (11) and
(12) contain the contribution ofρn

30 which was absent in MDAD for the same geometry of
experiment [15].

Using the state multipoles which for all magnetic sublevels of thenp3/2 and np1/2

states are given in table 1, one can easily find that for some magnetic sublevels the linear
combinations of state multipoles in (11) and (12) turn out to be equal to zero. In other
words, not all magnetic sublevels contribute to the photoelectron current. This conclusion
does not depend on whether the spin–orbit interaction in the continuous spectrum is taken
into account or not. Table 2 shows explicitly the relative contribution of each magnetic
sublevel to the photoelectron current for the geometry of experiment under consideration.
Unity in this table means that the intensity of a given sublevel in the spin-resolved spectrum
is the same as in the spin-unresolved spectrum. If the spin-unresolved spectrum for a given
magnetization is fitted by Lorentzian peaks, then the spin-resolved spectrum is obtained from
it by multiplying the fitted intensities by the coefficients given in table 2. This procedure
has already been used in [7] to simulate the spin-resolved spectra. It is seen from table 2
that only two magnetic sublevels of thenp3/2 core level and one magnetic sublevel of the
np1/2 level contribute to the spin-resolved spectra. Therefore the photoelectron spectrum
from thenp1/2 subshell should have a single-peak structure for both magnetizations with the
peak position in the magnetization-down spectrum shifted towards lower binding energies,
while in thenp3/2 spectrum there should be a double-peak structure for both magnetization
directions, and these two peaks for the magnetization-up spectrum should be shifted towards
the lower binding energies compared with the magnetization-down spectrum. This is in
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accord with the only published experimental observation (see figure 3 in [4]) where double-
peak structures have been observed in the region of 3p3/2 photoemission from Fe (the 3p1/2

contribution could not be clearly separated in these data). It is also seen that the positions
of two peaks on both curves in the lower part of this figure which corresponds tos‖n are
shifted to lower binding energies compared with the two peaks on both curves in the upper
part of this figure which corresponds tos‖ − n, again in accord with the results in table 2.
The problem of determining the contribution of 3p1/2 level still remains, and it is discussed
in more detail in [28]. Analysis of new experimental data for the 2p subshell of Fe using
the atomic model will be given elsewhere [29].

Table 1. State multipolesρn
N0 for magnetic sublevels ofnp1/2 andnp3/2 states.

j mj ρn
00 ρn

10 ρn
20 ρn

30

1
2

1
2

1√
2

1√
2

0 0

1
2 − 1

2
1√
2

− 1√
2

0 0

3
2

3
2

1
2

3
2
√

5
1
2

1
2
√

5

3
2

1
2

1
2

1
2
√

5
− 1

2 − 3
2
√

5

3
2 − 1

2
1
2 − 1

2
√

5
− 1

2
3

2
√

5

3
2 − 3

2
1
2 − 3

2
√

5
1
2 − 1

2
√

5

Table 2. The ratios of intensities of different magnetic sublevels ofnp hole states in spin-
resolved spectra to that in spin-unresolved spectra for the geometry of experiment shown in
figure 1 and linearly polarized light.n is the direction of the sample magnetization, ande is
the light polarization vector.

Intensity ratio

j mj e ⊥ n, s‖n e ⊥ n, s‖ − n e‖n, s‖n e‖n, s‖ − n

3
2

3
2 1 0 0 0

3
2

1
2 0 1 1 0

3
2 − 1

2 1 0 0 1

3
2 − 3

2 0 1 0 0

1
2

1
2 0 1 1 0

1
2 − 1

2 1 0 0 1

Consider now the same geometry of experiment but with light linearly polarized parallel
to the magnetization directionn (s-polarized light; see figure 1). Then, from equation (7),
one obtains

I1/2(κ, s, n) = σ(ω)

4π
√

2
(ρn

00 ± ρn
10)(1 − 1

2β) (13)

I3/2(κ, s, n) = σ(ω)

4π

(
ρn

00 − ρn
20 ± 1√

5
ρn

10 ∓ 3√
5
ρn

30

)
(1 − 1

2β) (14)
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where again the upper and lower signs refer to the cases whens‖n ands‖−n. The relative
contributions of each magnetic sublevel in this case are also given in table 2. Now only one
of magnetic sublevels of thenp3/2 final state contributes to the spin-resolved photoelectron
intensity, which is favourable for investigation of the energy positions of different magnetic
sublevels. It is worthwhile stressing that the ratios in table 2 are independent of the angle
θ .

Finally, if light is unpolarized while all other vectors are directed as before (see figure 1),
the angular distributions become more complicated functions of the angleθ :

I1/2(κ, s, n) = σ(ω)

4π
√

2
{ρn

00(1 − 1
2β) + (ρn

00 ∓ ρn
10)[

3
4β cos2 θ ± 1

2η1/2 sin(2θ)]} (15)

I3/2(κ, s, n) = σ(ω)

4π

[(
ρn

00 ± 3
√

5

10
ρn

10 − 1
4ρn

20 ∓ 3

4
√

5
ρn

30

)
(1 − 2β + 3

2β sin2 θ)

+ 9
4bigg(ρn

00 ±
√

5

3
ρn

10

)
β cos2 θ ±

(
1
2ρn

00 ±
√

5

2
ρn

10 + ρn
20

)
η3/2 sin(2θ)

]
(16)

where the upper and lower signs refer again to the cases(M ↑, s ↑) and (M ↑, s ↓),
respectively. To obtain the equations for the cases(M ↓, s ↓) andM ↓, s ↑), one should
reverse the signs of the terms with sin(2θ) in equations (15) and (16) for the cases(M ↑, s ↑)

and(M ↑, s ↓), respectively. The ratiosIj (κ, s, n)/Ij (κ, n) of the intensity of the different
magnetic sublevels in the spin-resolved spectrum to that in spin-unresolved spectrum, which
are now functions of the angleθ , are presented in table 3. They are less interesting in the
sense that now all sublevels but one contribute simultaneously, so that the spin-resolved
spectrum does not differ much from the spin-unresolved spectrum. Only in the limiting
case whenβ = 2 are the ratios in table 3 the same as in table 2 in the case whene ⊥ n.

Table 3. The ratios of intensities of different magnetic sublevels in spin-resolved spectrum to
that in spin-unresolved spectrum fornp core levels. The geometry of experiment is shown in
figure 1; light is unpolarized.

Intensity ratio

j mj s‖n s‖ − n

3
2

3
2 1 0

3
2

1
2

4−2β

5−β− 3
2β sin2 θ+2η3/2 sin(2θ)

1+β− 3
2β sin2 θ+2η3/2 sin(2θ)

5−β− 3
2β sin2 θ+2η3/2 sin(2θ)

3
2 − 1

2
1+β− 3

2β sin2 θ−2η3/2 sin(2θ)

5−β− 3
2β sin2 θ−2η3/2 sin(2θ)

4−2β

5−β− 3
2β sin2 θ−2η3/2 sin(2θ)

3
2 − 3

2 0 1

1
2

1
2

2−β

4+β−3β sin2 θ−2η1/2 sin(2θ)

2+2β−3β sin2 θ−2η1/2 sin(2θ)

4+β−3β sin2 θ−2η1/2 sin(2θ)

1
2 − 1

2
2+2β−3β sin2 θ+2η1/2 sin(2θ)

4+β−3β sin2 θ+2η1/2 sin(2θ)

2−β

4+β−3β sin2 θ+2η1/2 sin(2θ)

Consider now the absorption of circularly polarized light in the experiment geometry
shown in figure 1 with magnetization alongn′. Suppose that light is left circularly polarized,
i.e. the dipole operator in our laboratory frame is proportional toY11(ϑ, ϕ), and the photon
spin sγ is directed along the laboratoryZ axis. The photoelectron spin polarization will
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also be defined along the direction of sample magnetization. Then from equation (7) we
find that

I3/2(κ, s, n) = σ

4π

{(
1 + β

4

)(
ρn

00 ± 2√
5
ρn

10 + 1
2ρn

20 ± 3

2
√

5
ρn

30

)
−

(
1 + β

4
− 9

4W

)
×

(
± 1

2ρn
00 +

√
5

2
ρn

10 ± ρn
20

)
cosθ −

[
3
4βρn

00 ± 1

2
√

5
(1 + 5

2β)ρn
10

+ 27
40Wρn

20 ± 9

4
√

5
ρn

30

]
sin2 θ

}
(17)

I1/2(κ, s, n) = σ(ω)

4π
√

2

{
(ρn

00 ∓ ρn
10)

[
1 + β

4
±

(
1 + β

4
− 9

4W

)
cosθ

]
−

[
3
4βρn

00 ∓
(

1 + β

4

)
ρn

10

]
sin2 θ

}
(18)

where the upper and lower signs refer to the cases whens‖n′ ands‖ − n′, or (M ↑, s ↑)

and(M ↑, s ↓),

W = d2
d

d2
s + d2

d

(19)

wheredd andds are the reduced dipole matrix elements [24]. The equations for(M ↓, s ↓)

and(M ↓, s ↑) are obtained from the corresponding equations (17) and (18) for(M ↑, s ↑)

and (M ↑, s ↓) by reversing the sign of the term with cosθ . For right circularly polarized
light the same equations hold but with the reversed directions of bothn′ ands.

4. Discussion

Since spin-resolved measurements are much more complicated than spin-unresolved
measurements, it is worthwhile trying to understand what kind of new information can
be extracted from them. In the case of ferromagnets it is important to investigate the
magnetic splitting of core levels. Usual photoelectron spectroscopy could not resolve the
magnetic sublevels since their widths are larger than the energy splittings [6, 7, 11]. As was
shown above (see table 2), spin-resolved measurements in the geometry of figure 1 allow
one to exclude the contributions of some magnetic sublevels and in this way to resolve the
magnetic splitting of levels. In the case of s-polarized light, just one magnetic sublevel of
the np3/2 and np1/2 subshells contributes. In the case of p-polarized light, every second
magnetic sublevel contributes, which is also favourable for resolving the magnetic structure.
With circularly polarized light, as follows from equations (17) and (18) provided thatθ 6= 0,
all magnetic sublevels give a non-zero contribution, and only in the limitθ → 0 do they
give the same qualitative result as linearly polarized light withe ⊥ n (see table 2). In the
case of unpolarized light, evidently, the picture is also less clear than with linearly polarized
light (see table 3). So, for the geometry of experiment considered above, the analysis of
photoelectron spin enables one to separate the contributions of different magnetic sublevels
when linearly polarized light is used.

On the other hand, it was shown in [15] that four magnetic sublevels of thenp3/2

state can be resolved in MDAD measurements with s-polarized light even without spin
detection of photoelectrons, but one could not resolve in this way the magnetic sublevels
of the np1/2 state. An advantage of MDAD arises from the fact that it is a difference
between two angular distributions where many terms cancel out. One can also consider
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differences between two spin-resolved angular distributions. Since there are four different
combinations of the directions of vectorss andn, one can define six differences between
angular distributions. Some of them are rather simple, which can help one to analyse
experimental spectra and to extract the theoretical parameters from the measured data; the
others are not simple and hardly help in the interpretation of spectra. Consider as an example
two differences between the spectra given by equation (12) for p-polarized light:

I3/2(M ↑, s ↑) − I3/2(M ↓, s ↓) = σ(ω)

2π
(ρn

00 +
√

5ρn
10 + 2ρn

20)η
3/2 sin(2θ) (20)

I3/2(M ↑, s ↑) − I3/2(M ↑, s ↓) = σ(ω)

2π

[
2√
5
(ρn

10 + 3
4ρn

30)(1 + β − 3
2β sin2 θ)

+(ρn
00 + 2ρn

20)η
3/2 sin(2θ)

]
. (21)

Equation (20) is simpler than (12), and the corresponding difference can be used to extract
the parameterη3/2 from the experiment. Using table 1, one can easily find that the sum of
state multipoles,ρn

00 + √
5ρn

10 + 2ρn
20, in equation (20) is equal to 3 and−1 for themj = 3

2

andmj = − 1
2 magnetic sublevels, respectively, and to zero in the two other sublevels. The

difference between the corresponding experimental curves presented in the lower part of
figure 3 in [4] show qualitatively just this behaviour. Equation (20) gives an example of the
terms which were excluded from the model consideration of [17], since the spin polarization
parameterηj is just the interference term between thel + 1 andl − 1 continuum channels
neglected in [17]. Equation (21) contains the same terms as (12) but with different linear
combinations of state multipoles. As a result, the difference (21) is non-zero in all magnetic
sublevels, and therefore its determination could not be used so easily for qualitative analysis
of the data. The disadvantage in determining the differences is connected with much larger
error bars in them.

Determination of differences is more helpful when the initial expressions are
complicated, as in particular in the cases of circularly polarized and unpolarized light
considered above. For example, in the case of unpolarized light, one can obtain from
equations (15) and (16)

I1/2(M ↑, s ↑) − I1/2(M ↓, s ↓) = σ(ω)

4π
√

2
(ρn

00 − ρn
10)η

1/2 sin(2θ) (22)

I3/2(M ↑, s ↑) − I3/2(M ↓, s ↓) = σ(ω)

4π
(ρn

00 +
√

5ρn
10 + 2ρn

20)η
3/2 sin(2θ). (23)

These differences have non-zero values for the magnetic sublevels withmj = 3
2 and

mj = − 1
2 and are equal to zero for other sublevels. Therefore their determination can

help in the interpretation of experimental spectra, provided that the error bars are reasonably
small. Qualitatively the same answer follows from equations (17) and (18) for the analogous
differences in the case of circularly polarized light.

One can define not only the differences but also the sums of two spectra [29]. From
equation (12) for linearly polarized light it follows, for example, that

I3/2(M ↑, s ↑) + I3/2(M ↓, s ↓)

= σ(ω)

2π

(
ρn

00 + 1
2ρn

20 + 2√
5
ρn

10 + 3

2
√

5
ρn

30

)
(1 + β − 3

2β sin2 θ) (24)
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which is again simpler than (12) and contains only the asymmetry parameterβ. Since the
error bars in the sum are much smaller than in the difference, their determination can be
more successfully used to extract the values of theoretical parameters from experiment.

Using the equations given above, one can easily find the other differences or sums of
the intensities and choose the values which are most appropriate for the analysis of the data
obtained for a particular geometry of experiment. In the cases of circularly polarized and
unpolarized light the determination of these differences will simplify the analysis of spectra,
while for linearly polarized light the spectra themselves are relatively simple so that one
can analyse them without defining the differences.

5. Conclusions

We have derived the general equations describing the angle- and spin-resolved photoemission
from core levels of ferromagnets in the atomic model. They have been applied to the analysis
of photoemission normal to the surface fromnp core levels. We showed that, in the case of
linearly polarized light, one can reach the clearest separation of different magnetic sublevels
because, for the given directions of magnetization and spin, only some of magnetic sublevels
contribute to the photoelectron spectra. It gives a rather unique possibility to resolve the
magnetic sublevels the widths of which are larger than their energy separation. In the cases
of circularly polarized and unpolarized light, one could not reach such good separation of
magnetic sublevels for the experiment geometries considered above. Therefore synchrotron
radiation is particularly suitable for this kind of spin-resolved experiment.

In some cases it can be helpful to analyse the differences of two spin-resolved spectra
which have simpler structure than the spectra themselves. In particular, it can be helpful
when unpolarized light has been used to obtain spin-resolved spectra. These differences can
be as simple as the spectra obtained with linearly polarized light, but the error bars in the
differences are much larger, so that their investigation is not always feasible.

It is important that the relative intensities of different magnetic sublevels in the atomic
model are independent of the angle of incidence of photons and their energy; therefore one
does not need to perform any calculation in order to analyse qualitatively the experimental
spectrum. It is sufficient to simulate the spin-unresolved spectrum by the Lorentzians with
amplitudes obtained from the fit to the experimental spectrum, as has been done in [7],
and then to multiply the intensities by the coefficients given in table 2 in order to obtain
the spin-resolved spectrum. The first application of the atomic model to the analysis of
experimental spectra, both spin unresolved [7, 15] and spin resolved [7, 29], showed that it
correctly describes the qualitative features observed in the experiments.

We have studied in detail the particular cases of photoemission fromnp core levels
because they have been investigated experimentally, and because they represent the simplest
example. The general equations (7) and (8) can be applied also tond andnf core levels, but
the analysis of results will be more complicated because more state multipoles characterizing
the polarization of the hole state will contribute simultaneously. In principle, the atomic
model can be applied also to photoemission from valence bands, if one can describe the
polarization of initial state by state multipoles.
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